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The influence of elastic mismatch between 
indenter and substrate on Hertzian fracture 
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This paper is concerned with indentation testing of brittle materials. It is shown that a mismatch of 
elastic constants between the indenter and component being tested has a profound influence on 
the stress state induced. It is shown that the development of surface flaws into cracks is severely 
impeded if the indenter is more rigid than the substrate and vice versa. A quantitative assessment 
of this phenomenon, in terms of both the contact stress field generated and the stress intensity 
factor experienced by defects, is given. This permits a more precise determination of either the 
fracture toughness or the surface flaw distribution to be made. 

1. In troduct ion  
It is well known that pressing a spherical indenter 
normally into a perfectly brittle material will cause 
surface flaws to develop into a ring crack [1]. The ring 
often simultaneously extends and flares out into the 
frustum of a cone [2] if the surface is well polished, but 
this development may not happen unless the load is 
increased further. This phenomenon, first discovered 
about a hundred years ago [3], was for a long time 
regarded as little more than a curiosity. More recently, 
however, with the advent of the use of ceramic ele- 
ments in an increasingly wide range of mechanical and 
electrical engineering applications, the potential of the 
test as a semi-destructive means of measuring fracture 
toughness or surface integrity has been realized. The 
test is potentially the brittle material equivalent of 
the hardness test conducted on a ductile material: it 
gives the opportunity to determine toughness whilst 
damaging only a small portion of the component. The 
principal difficulties in employing the test on a routine 
basis are twofold: 

1. Because the crack generated is almost entirely 
subsurface, leaving only a ring visible on the surface, it 
is not possible to measure the size of the developed 
crack in an opaque material easily, or the load at 
which this occurs. To a large extent the problem of 
finding the latter parameter may be overcome by 
attaching an acoustic emission sensor to the substrate, 
which is readily capable of detecting the spontaneous 
growth of the crack, and although this does not pro- 
vide such a complete set of information as knowing 
the final geometry it is, nevertheless, invaluable in 
determining with great precision the critical stress 
intensity factor for development of the ring crack. 

2. In a normal Hertzian indentation the zone of 
tension is confined to a very small annular ring, and 
the spherical or hydrostatic component of stress is 
very much greater in magnitude within the zone im- 
mediately beneath the indenter. Indeed, the subsurface 

2860 

deviatoric stress, whilst smaller in magnitude than 
its spherical counterpart, nevertheless dominates the 
magnitude of the maximum tension by a significant 
amount. Therefore, in a great many cases, these at- 
tributes of the stress field mean that plasticity precedes 
brittle fracture, if the material has any ductility at all, 
and particularly if the surface finish is very good. It is 
very difficult, for example, to carry out an indentation 
test on PMMA which induces a ring crack without 
incurring gross plastic flow first in what is normally 
thought of as a brittle material [4]. It is usually found 
that the scale of the test also has an important influ- 
ence on the effect of indentation: tests carried out 
using micro-indenters produce a well-defined crack 
system whilst geometrically similar tests carried out at 
the bulk scale may often lead to lateral fracture and 
disintegration of the specimen. 

In this paper we will concentrate our attention on the 
second problem, and show that it is straightforward to 
enhance the growth of surface defects by using an 
indenter which is more compliant than the object 
being tested. This phenomenon received attention 
from Johnson et al. [5], who were the first to notice 
that an elastic mismatch between the contacting bo- 
dies will give rise to the presence of shearing tractions, 
and hence a modified contact stress field. To under- 
stand the origin of this effect, consider the case of an 
elastic sphere pressed on to an elastically dissimilar, 
frictionless half-plane to form a Hertzian contact of 
radius a (Fig. 1). Particles lying on the surface of each 
sphere will move radially inwards in proportion to 
( 1 -  2v)/p, where v is Poisson's ratio and la is the 
modulus of rigidity. As the two bodies are dissimilar 
there will be a relative displacement of any initially 
coincident pair of surface particles, and the one in the 
more compliant body, i.e. the one having a larger 
value of (1 - 2v)/~t, will displace more. This relative 
motion will, however, be resisted by the presence of 
interfacial friction, which will therefore act radially 

0022-2461 �9 1994 Chapman & Hall 



Body1 

Body 2 c 

\ z 

a �9 

Figure  1 Two dissimilar  elastic spheres  pressed together  by a nor-  
mal  force, P; the radial  surface d isp lacements  in bodies 1 and  2 differ 
if their  elastic cons tan t s  differ. 

outwards on the more compliant body, and radially 
inwards on the less compliant one. Further, these 
shearing tractions will cause a change in the relative 
curvature of the contacting bodies, which will in turn 
influence the pressure distribution. It will therefore be 
seen that the contact problem itself is much more 
complex than that occurring between elastically sim- 
ilar bodies. In practice the magnitude of the influence 
of shearing tractions on the surface normal displace- 
ment is small, so that the contact pressure remains 
approximately Hertzian, and any differences will here 
be neglected [6]. 

The import  of the above observations is that the 
ideal indenter is more compliant, harder, but tougher 
than the substrate being tested if the zone of tension is 
to be maximized, as will be shown. 

2. T h e o r y  
2.1. Contact  stress field 
The state of stress induced by normal indentation by 
a sphere has been known for some time [7], and so 
attention is concentrated on the influence of the radial 
shearing tractions produced by mismatch. This prob- 
lem was first addressed by Spence [8], who showed 
that the contact patch consists of a central stick zone 
where corresponding particles on the two bodies are 
adhered, surrounded by an annulus of slip in which 
the shear traction is limited by the coefficient of fric- 
tion between the bodies, f In axisymmetric problems 
involving elastic mismatch it may be shown that the 
influence of the mismatch may be quantified by 
a single dimensionless composite parameter  due to 
Dundurs [9], namely 

[(1 - 2vl)/ ta,]  - [(1 - 2v2)/g2] 
[3 = (1) 

2A 

where 

1 - v l  1 - Vz 
A - + - -  

].11 g2 

is the composite compliance of the bodies and the 
subscripts 1, 2 refer to the two contacting bodies. The 
form of the contact shear traction distribution arising 

is complex, and the boundary between the stick and 
slip regions is located at a radius ac, where c is 
given by 

f Qo(c) 
- (2) 

cK(c') 

where 

C r2 = 1 - -  C 2 

0o(x) 2 in \ 1  - x /  

and K ( ) is the complete elliptic integral of the first 
kind and a is the radius of the contact disc. This 
equation is plotted in Fig. 2. If the coefficient of fric- 
tion between the two bodies is very low the stick zone 
will shrink towards a point, and the slip annulus may 
be expected to extend over the entire contact disc. 
When this is so the shear traction distribution is 
straightforward, and is given by 

q(r) 
- (1 - r2) 1/2 sgn [3 0 < r < 1 (3) 

fpo 

where q(r) is the shear traction, Po is the peak Hertzian 
contact pressure and the coordinate set has been nor- 
malized with respect to the radius of contact a. If, 
taking the other limit, Dundurs '  constant is very low, 
stick will persist over almost the entire contact. This 
problem was investigated by Goodman  [6], who 
showed that 

q(r) _ r f,,' l n x d x  
13po ~ ov (1 - x2) 2 0 < r < 1 (4) 

where r '2 = 1 - r 2. In the general case neither of these 
idealizations is appropriate, and the solution is needed 
[8]. This is complex to evaluate, and in its original 
form described only what arises beneath a flat-ended 
punch, rather than a Hertzian indenter. From this the 
solution for a sphere may be found by transformation. 
For  a flat-ended punch 

fpo 
qB - 2(1 -- r2) 1/2 [1 - W(r,c)] sgn O < r < l  

(5) 

where 

UC(r,c) = 0 c<~r<~ 1 

2I f]/2 dO 
= wr E1 - (1 - r 2) sin 2 O] (1 - c '2 sin 2 0 )  1 / 2  

CK_(c') ( w  Qo(w)~ l  0 ~<r ~ c  (6) 
r \ ~  Qo(c)/J 

and 

C 2 __ r 2 
w 2 - -  

l - -  r 2 

Equations 5 and 6 describe the shear traction distri- 
bution for a punch. The corresponding solution for 
a spherical indenter is given by 

f r  q a ( t )  dt q(r) = 2r t2 (7) 
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Figure 2 The size &the stick zone radius c, normalized with respect 
to the radius of the contact disc a, as a function of the ratio f/[L 

The complete state of stress at any point induced by 
the traction distributions corresponding to Equations 
3 5 has been evaluated r io]  and details will not be 
reproduced here. Inevitably, numerical methods are 
needed to evaluate the stress at subsurface points. 
However, the principal effect of the shear is on the 
surface state of stress; indeed the shear traction distri- 
bution is self-equilibrating, i.e. it has no resultant, and 
so its influence is short-lived. Nevertheless, this is 
precisely the region in which crack development takes 
place, and we will therefore consider it in some detail. 
For the surface, the stress components induced by 
radial shear (Orr and Oo0) may be written in the closed 
form given by Hills and Sackfield [10] and are, for the 
case of partial slip at the interface 

2(1 -- v) 2 ( d I )  
cY,r - r2 I - - - r  drr (8) 

2 ( 1 -  v) 2v ( d I ~  
cYoo - ry  I - r \ d r r J  (9) 

where, within the stick zone 

3hi 1 - p3 
_ _ _  + Mr 2 

213po 2 

1 ( d e )  
f3po drr = pr + 4n Mr2 

and 

0 ~< r ~ c (10) 

1 § c 2 1 Ec'Qo(c) 
M - - -  Qo(c) 

2C 2 2C c2 K ( c ') 

whilst within the slip zone 

3rt, I (P-~)]  fc" t2 2po - [3 L -- p2tan -1 + 3f (r 2 - - t 2 ) 1 / 2  

x [ K ( t ' ) - - E ( t ' ) ] d t  c~< r~< 1 (11) 

2po drr = [3 p r tan  -1 + rvQo(c) 

+ 2r(r -- v ) M ]  +fr  

f[g(t ') - 2E(t')dt 
X (r2 ~ t 2 ~  c<~r<~ 1 

2862 

where 

L = 0 + M 2r 3 + V 3 - -  3vr 2 -- ~ (3 -- c 2 -- 2r 2) 

V 2 = r 2 _ C 2 

sin 0 = c/r 

Lastly, exterior t o  the contact 

3hi 

2po 

fc t2 • (r 2 _ t2)1/2 [K(t ')  - E (T ' ) ]  dt 

2po 

r ~ l  

(12) [c (r3)l  
--~vrv § M 2r2 v vr 

Qo_(C)~_r (3 - c 2 - 2r 2) - 4rv ] 
6 Lv 

- 6 v -  qrQo 3rv 

+ f r ( C  [ K ( c ' ) -  E(c')] 

fcX K ( t ' ) -  2E(t') at ) 
+ (r ~ ~ t2)l/~ r >~ 1 

where K ( ) ,  E( ) are complete elliptic integrals. Com- 
plex as these expressions are, they at least prove 
straightforward to evaluate. It should be emphasised 
that these equations relate only to the surface itself, 
and that stress gradients in the z direction are ex- 
tremely severe, so that for cracks of finite depth the 
complete interior stress field may be needed. Never- 
theless, the above results are of some value, and it is 
quite impossible to express the interior stresses in 
closed form. Of principal interest in the present prob- 
lem is the radial direct stress which lies in a principal 
direction at the surface, and hence propels the crack in 
its initial stages, and this is shown in Fig. 3. It  is very 
clear from the figure that the shearing stresses have 
a profound influence on Orr, although it should be 
noted that the stress component  associated with the 
shear is normalized with respect to the coefficient of 
friction. Qualitatively, two features are apparent; first, 
that the magnitude of the maximum tension may 
easily be doubled compared with the frictionless case, 
and secondly that the area over which an appreciable 
tension exists in the surface is greatly increased, and 
may now persist under the contact patch itself. 

It should be recalled that the stresses calculated as 
due to the frictional shear have an equal magnitude in 
the two contacting bodies, but are of opposite sign; 
they are tensile in the less compliant body and com- 
pressive in the more compliant body. Historically this 
effect was first considered in relation to the indenta- 
tion of glass by a steel ball, so that the shearing stress 
actually has the effect of inhibiting crack growth. 
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Figure 3 Radial direct stress lying in the surface, ~,,, as a function of 
radial position r, for partial slip, v = 0.25. c is the normalized radius 
of the stick zone. 

However ,  in relation to the indentat ion test of mater-  
ials having some limited ductility it is seen that  it 
would be desirable to use a more  compl ian t  indenter  
in order  to encourage crack development ,  so that  this 
precedes plastic flow. 

The "bulk"  contac t  field m a y  be used to infer certain 
characterist ics of the growth  of Her tz ian  ring and cone 
cracks. First, if it is assumed that  the crack is propel led 
by the more  positive principal  stress, it is clear that  
development  can occur only in regions of net tension, 
and this zone is shown in Fig. 4. This shows that  the 
cone crack is restricted to a shallow frustum in the 
case of  like materials ,  but  is somewhat  extended if 
a compl ian t  indenter  is used. Secondly, some indica- 
t ion of the likely form of the crack m a y  be gained from 
a plot  of stress trajectories (Fig. 5). These are lines 
whose tangent  at any point  lies in the direction of the 
more  positive principal  stress, and are consistent with 
the form of the f rus tum of a cone usually observed. 
The presence of the crack will, of  course, change the 
stress field experienced considerably,  but  Figs 4 and 
5 nevertheless provide  an encouraging quali tat ive 
explanat ion of the crack shape. 

2.2. Crack tip stress intensities 
Cracks propel led by contact  stress fields invariably 
exist in extremely steep stress gradients,  and the ut- 
mos t  care is therefore needed in the evaluat ion of 
the stress intensity factors. Further ,  in the present  
problem,  when once the fully developed cone crack 
has developed it is impossible to ignore the axisym- 
metric  nature  of  the geometry,  and  this makes  the 
analysis even more  challenging, a l though at least one 
solution to the full Her tz ian  cone crack has been 
published [11]. 

In a real indenta t ion test, pre-existing surface de- 
fects m a y  well be in the form of semi-circular ( thumb-  
nail) cracks. As the contac t  load is increased the stress 
intensity factor  a round  the crack front increases until 
the fracture toughness  value is reached, at which point  
the crack "runs round"  to form a ring, and, as stated at 
the outset, m a y  s~multaneoulsy flare into the f rus tum 
of a cone. The  solution we will present  here applies to 
plane cracks, i.e. those existing in a two-dimensional  
stress field. We m a y  therefore view the solution on two 
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Figure 4 More positive principal stress contours beneath a norm- 
ally loaded dissimilar elastic contact, 13 = 0.204. (a) Less compliant 
body: values of contours CYmax/P o a re  (1) - 0.933, (2) - 0.800, (3) 
- 0.667, (4) - 0.533, (5) - 0.400, (6) - 0.267, (7) - 0.134, (8) 
- 0.267x 10 -3, (9) 0.133, (10) 0.266. (b) More compliant body: 

values of contours cr~ax/P o are (1) - 0.488, (2) - 0.430, (3) - 0.371, 
(4) -0.313, (5) -0.254, (6) -0.196, (7) - 0.137, (8) 
- 0.786 x 10-1, (9) - 0.201 x 10-1, (10) 0.384 x 10- 2. 

different scales: 

1. It may  be viewed as an approx imate  solution to 
the stress intensity factor obta ining at the b o t t o m  of 
the- semi-circular flaw, and therefore the value which 
controls  the onset of deve lopment  into a crack of 
macroscopic  dimensions.  

2. When  a self-arrested crack in the form of a 
simple ring develops, it m a y  be viewed as the stress 
intensity factor existing a round  the b o t t o m  of the r ing  
crack: thus, crack growth will arrest  when the stress 
intensity factor at this point  falls below the fracture 
toughness value. It  should be emphasized that  this 
self-arrest m a y  not  always be experienced in practice, 
and that  the solution will only be valid if the crack 
depth is much  less than the radius of  the contact  disc, 
i.e. s >> d (Fig. 6). 
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Figure 5 Trajectories of the principal stress direction beneath 
a normally loaded dissimilar elastic contact, [3 = 0.204, (a) in less 
compliant body and (b) in more compliant body. 
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Figure 6 Geometry of crack in the neighbourhood of the contact. 

A suitable method to determine the stress intensity 
factor for this problem is to distribute infinitesimal 
displacement discontinuities (or dislocations) along 
the length of the crack, in order to render the crack 
faces traction-free. This technique has been used ex- 
tensively before, and an introductory paper [12] 
should be consulted for details. Here we will restrict 
ourselves to writing down the integral equation which 
describes the traction-free state of the crack, namely 

0 = ~ri(~) + rc(~ + 1~) B i (~ )g (~ , z )dz i  = r , z  

(13) 

where ~r~ is the traction along the line of the crack in 
its absence, ~: is Kolosov's constant, B~ is the unknown 
dislocation density and the function K(~, z) gives the 
value of the stress at point { due to a dislocation of 
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unit strength at point z. This function and a descrip- 
tion of the solution technique used is given elsewhere 
[12] and will not be repeated here. However, it should 
be stated that the procedure described is preferred 
because it can handle the stress gradient extremely 
well, and gives rise to a set of simultaneous linear 
algebraic equations representing the integral Equa- 
tion 13 whose solution may easily be found, and which 
provides an efficient means of determining the stress 
intensity factor. 

3. R e s u l t s  
In this section we display the stress intensity factors 
found for short cracks growing normally inwards from 
the free surface. It is impossible to present a compre- 
hensive set of results to the problem posed as there are 
so many independent variables, namely Dundurs' con- 
stant 13, the coefficient of friction f, the dimensionless 
depth of the crack (d/a) and the dimensionless radius 
of the crack's location (s/a) (Fig. 6). It will be recalled, 
however, that with the approximations made in deter- 
mining the shear traction distribution described in 
Section 2.1 it is possible to remove one of the inde- 
pendent quantities describing the surface traction 
distribution. Fig. 7a and b show the crack tip stress 
intensities in modes I and II, respectively, for a contact 
where slip persists everywhere: this may be expected to 
be a good idealization when f/13 < 1, i.e. the elastic 
mismatch is great and the interface is moderately well 
lubricated. The values shown are for a crack located at 
s/a = 1.2, i.e. outside the contact disc, and positioned 
approximately at the point of maximum radial ten- 
sion. The curves corresponding to f =  0 are those 
which would obtain in a contact between elastically 
similar components, whilst those where f  > 0 relate to 
cracks located in the stiffer of the contacting bodies, 
i.e. the shear tractions are acting radially inwards on 
the body containing the crack. 

We have used the device of quoting a negative value 
of f for problems in which the shear tractions act 
radially outwards. This is no more than a convention, 
and the coefficient of friction is, of course, always 
positive; the curves shown for f <  0 therefore relate to 
cracks in the more compliant body. It will be recog- 
nized that in the latter case the tendency towards 
crack opening is greatly suppressed, and indeed for 
coefficients of friction greater in absolute magnitude 
than about 0.3 there may be little or no mode I load- 
ing of the crack tip at all. The mode II component of 
loading always vanishes when the crack is very short 
as the surface is devoid of shear tractions. However, in 
this region the shear stress distribution exhibits ex- 
tremely steep gradients in the z direction, and hence it 
is possible to obtain shear loading of either sign, 
depending on the depth of the crack (Fig. 7b). The 
absolute value of the mode II loading component is 
nevertheless very small in every case, and crack pro- 
pulsion is dominated by mode I loading. In Fig. 7c 
and d analogous results are shown for contact-crack 
combinations where stick is assumed to persist every- 
where. These solutions may be expected to be repres- 
entative of real behaviour when f/13 >> 1, i.e. when the 
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Figure 7 Variation in stress intensity factors for a crack normal to 
the free surface, located at s/a = 1.2 and with v = 0.25: (a) and (b) 
relate to wholly slipping contacts and give values for modes I and I], 
respectively, whilst (c) and (d) relate to adhered contacts and again 
relate to modes I and II loading, respectively. 

degree of mater ia l  mismatch  is modes t  and the inter- 
facial coefficient of friction is large. The convent ion 
regarding the sign of [3 used is consistent with that  
used for the coefficient of friction, i.e. if 13 > 0 the 
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Figure 8 Maximum mode ! stress intensity factor experienced by 
a normal crack in a glass component when loaded by a steel or 
tungste n carbide indenter. The depth of the crack is d/a, and s/a has 
been permitted to vary so that the location giving the maximum 
value of K~ is utilized. E* is the reduced modulus of sphere and 
substrate, K~c is the fracture toughness, R is the sphere radius and 
PF is the fracture load. 

results apply  to the stiffer material ,  whilst if [3 < 0 the 
results pertain to the more  compl iant  material .  

Fig. 8 shows results obta ined with specific mater ial  
combinat ions ,  and retaining the assumpt ion  of partial  
slip. Values given are for m in imum fracture load, 
which is equivalent  to the reciprocal of  the m a x i m u m  
stress intensity factor in mode  I, for the indentat ion of 
glass. The ordinate  axis is normal ized with respect to 
the load, mater ial  stiffness and contact  geometry,  and 
m a y  be used to  determine the contact  force needed 
to achieve a part icular  stress intensity factor. The 
Poisson 's  rat io of glass is taken as 0.25, and the 
locat ion of the crack has been permit ted  to take 
a range of values within which the stress intensity 
factor has been maximized.  Results are shown for two 
kinds of  indenter, namely  steel and tungsten carbide, 
and two representat ive values of  the coefficient of 
friction. It  will be seen that  the choice of indenter  
mater ia l  has a p rofound  influence on the crack driving 
force, regardless of the crack depth. 

4. Summary 
A comprehensive  study of the influence of indenter  
elasticity on the crack driving force for Hertz ian ring- 
type cracks has been conducted.  The p rob lem has 
been split into two parts,  namely  the determinat ion of 
the contact  stress field for frictional contact  between 
elastically dissimilar materials,  and the determinat ion 
of crack tip stress intensities for plane cracks propel led 
by such a stress field. The results displayed show how 
the crack tip stress intensity factors experienced by 
such contacts  m a y  be widely influenced by the per- 
turba t ion  on a s tandard  Hertz ian contact  stress field 
by frictional radial shearing tract ions generated by the 
effects of elastic mismatch.  It  is par t icular ly impor tan t  
to note the quali tat ive result that  using an indenter  
which is more  rigid than the componen t  being tested 
causes a suppression of mode  I crack loading, so that  
the influence of mode  I I  loading becomes cor respond-  
ingly more  impor tan t ,  part icularly for deeper initial 
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flaws, and that there is in any case a greater tendency 
towards crushing of the surface rather than the clean 
propulsion of a well-defined single crack. 

It is valuable to know just how dissimilar the sub- 
strate and indenter ,may be before it is permissible to 
ignore the influence of elastic mismatch. To this end, 
the difference in the surface stresses (and hence the 
difference in the fracture loads for materials having 
the same toughness, providing the critical cracks are 
short) was calculated, including and excluding the 
influence of surface shearing tractions. This was done 
for two representative substrate materials under con- 
ditions of full stick. It was shown that for the absolute 
maximum K1 values to be within 10% of the true 
value, the influence of mismatch could only be neg- 
lected if the absolute value of [3 was less than 0.019 if 
v = 0.14, or 0.009 if v = 0.34. It is therefore apparent 
that in order to obtain accurate results either a vir- 
tually elastically identical identer must be employed, 
or due allowance for the presence of the radial shear- 
ing tractions must be made. 

Copies of the F O R T R A N  code for use on a PC may 

be obtained from the authors to permit a wider range 
of variables to be covered. 
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